Hằng đẳng thức đáng nhớ là kiến thức trọng tâm nhất của chương trình Toán học lớp 8. Đây cũng là kiến thức nền tảng cần nắm vững để áp dụng vào quá trình học tập sau này của các em học sinh. Để giúp các em nắm vững, nhận dạng đúng và vận dụng những hằng đẳng thức vào giải toán hiệu quả nhất, Seo Là Lên xin giới thiệu bộ bài tập về 7 hằng đẳng thức đáng nhớ chi tiết nhất dưới đây!
Link tải bài tập về 7 Hằng đẳng thức đáng nhớ đầy đủ nhất
Tải trọn bộ bài tập về 7 hằng đẳng thức đáng nhớ: TẠI ĐÂY
Nếu trong quá trình bạn tải về từ google drive có thông báo như nội dung bên dưới bạn hãy đăng nhập gmail vào để tải, hoặc bạn mở bằng trình duyệt khác để tải bạn nhé. Nếu không tải được mail cho chúng tôi theo email: seolalen.vn@gmail.com chúng tôi sẽ gửi lại file setup cho bạn
Rất tiếc, hiện tại bạn không thể xem hoặc tải xuống tệp này.
Gần đây, có quá nhiều người dùng đã xem hoặc tải xuống tệp này. Vui lòng truy cập lại tệp này sau. Nếu tệp mà bạn truy cập rất lớn hoặc bị chia sẻ với nhiều người, bạn có thể mất đến 24 giờ để có thể xem hay tải tệp xuống. Nếu bạn vẫn không thể truy cập tệp này sau 24 giờ, hãy liên hệ với quản trị viên tên miền của bạn.
Giới thiệu bộ tài liệu bài tập về 7 hằng đẳng thức đáng nhớ
Bộ tài liệu bài tập 7 hằng đẳng thức đáng nhớ được biên soạn theo chương trình học của lớp 8. Tài liệu tổng hợp toàn bộ những kiến thức trọng tâm về hằng đẳng thức cùng các dạng bài tập tương ứng để giúp các em dễ dàng nhận diện và vận dụng khi làm bài.
Bộ tài liệu này có thể dùng để ôn luyện tại nhà hoặc các thầy cô giáo có thể dùng để ra bài tập, đề thi cho học sinh. Cùng tham khảo nội dung chi tiết của tài liệu sau đây nhé!
Lý thuyết 7 hằng đẳng thức
1. Bình phương của một tổng
Bình phương của một tổng bằng bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai.
(A + B)2 = A2 + 2AB + B2
2. Bình phương của một hiệu
Bình phương của một hiệu bằng bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai.
(A – B)2 = A2 – 2AB + B2
Ví dụ:
( x – 2)2 = x2 – 2. x. 22 = x2 – 4x + 4
3. Hiệu hai bình phương
Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó.
A2 – B2 = (A + B)(A – B)
4. Lập phương của một tổng
Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai.
(A + B)3 = A3 + 3A2B + 3AB2 + B3
Ví dụ:
(x+1)^{3}=x^{3}+3 \cdot x^{2} \cdot 1+3 \cdot x \cdot 1^{2}+1^{3}=x^{3}+3 x^{2}+3 x+1
5. Lập phương của một hiệu
Lập phương của một hiệu = lập phương số thứ nhất – 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai – lập phương số thứ hai.
(A – B)3 = A3 – 3A2B + 3AB2 – B3
6. Tổng hai lập phương
Tổng của hai lập phương bằng tổng hai số đó nhân với bình phương thiếu của hiệu.
A3 + B3 = (A + B)(A2 – AB + B2)
Ví dụ:
x^{3}+8=x^{3}+2^{3}=(x+2)\left(x^{2}-2 x+4\right)
7. Hiệu hai lập phương
Hiệu của hai lập phương bằng hiệu của hai số đó nhân với bình phương thiếu của tổng.
A3 – B3 = (A – B)(A2 + AB + B2)
Bài tập hằng đẳng thức đáng nhớ cơ bản
Câu 1: Tính:
a, (x + 2y)2
b, (x – 3y)(x + 3y)
c, (5 – x)2
Lời giải:
a, (x + 2y)2 = x2 + 4xy + 4y2
b, (x – 3y)(x + 3y) = x2 – (3y)2 = x2 – 9y2
c, (5 – x)2 = 52 – 10x + x2 = 25 – 10x + x2
Câu 2: Tính:
a, (x – 1)2
b, (3 – y)2
c, (x – 1/2)2
Lời giải:
a, (x – 1)2 = x2 –2x + 1
b, (3 – y)2 = 9 – 6y + y2
c, (x – 1/2)2 = x2 – x + 1/4
Câu 3: Viết các biểu thức sau dưới dạng bình phương một tổng:
a, x2 + 6x + 9
b, x2 + x + 1/4
c,2xy2 + x2y4 + 1
Lời giải:
a, x2 + 6x + 9 = x2 + 2.x.3 + 32 = (x + 3)2
b, x2 + x + 1/4 = x2 + 2.x.1/2 + (1/2 )2 = (x + 1/2)2
c, 2xy2 + x2y4 + 1 = (xy2)2 + 2.xy2.1 + 12 = (xy2 + 1)2
Câu 4: Rút gọn biểu thức:
a, (x + y)2 + (x – y)2
b, 2(x – y)(x + y) + (x + y)2 + (x – y)2
c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)
Lời giải:
a, (x + y)2 + (x – y)2
= x2 + 2xy + y2 + x2 – 2xy + y2
= 2×2 + 2y2
b, 2(x – y)(x + y) + (x + y)2 + (x – y)2
= [(x + y) + (x – y)]2 = (2x)2 = 4×2
c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)
= (x – y + z)2 + 2(x – y + z)(y – z) + (y – z)2
= [(x – y + z) + (y – z)]2 = x2
Câu 5: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1.
Lời giải:
Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)
Ta có: a2 = (5k + 4)2
= 25k2 + 40k + 16
= 25k2 + 40k + 15 + 1
= 5(5k2 + 8k +3) +1
Ta có: 5(5k2 + 8k + 3) ⋮ 5
Vậy a2 = (5k + 4)2 chia cho 5 dư 1.
Câu 6: Tính giá trị của biểu thức sau:
a, x2 – y2 tại x = 87 và y = 1
b, x3 – 3×2 + 3x – 1 tại x = 101
c, x3 + 9×2+ 27x + 27 tại x = 97
Lời giải:
a, Ta có: x2 – y2 = (x + y)(x – y)
b, Thay x = 87, y = 13, ta được:
x2 – y2 = (x + y)(x – y)
= (87 + 13)(87 – 13)
= 100.74 = 7400
c, Ta có: x3 + 9×2 + 27x + 27
= x3 + 3.x2.3 + 3.x.32 + 33
= (x + 3)3
Thay x = 97, ta được: (x + 3)3 = (97 + 3)3 = 1003 = 1000000
Câu 7: Chứng minh rằng:
a, (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = 2a3
b, (a + b)[(a – b)2 + ab] = (a + b)[a2 – 2ab + b2 + ab] = a3 + b3
c, (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad – bc)2
Lời giải:
a, Ta có: (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = a3 + b3 + a3 – b3 = 2a3
Vế trái bằng vế phải nên đẳng thức được chứng minh.
b, Ta có: (a + b)[(a – b)2 + ab] = (a + b)[a2 – 2ab + b2 + ab]
= (a + b)(a2 – 2ab + b2) = a3 + b3
Vế phải bằng vế trái nên đẳng thức được chứng minh.
c, Ta có: (ac + bd)2 + (ad – bc)2
= a2c2 + 2abcd + b2d2 + a2d2 – 2abcd + b2c2
= a2c2 + b2d2 + a2d2 + b2c2 = c2(a2 + b2) + d2(a2 + b2)
= (a2 + b2)(c2 + d2)
Vế phải bằng vế trái nên đẳng thức được chứng minh.
Câu 8: Chứng tỏ rằng:
a, x2 – 6x + 10 > 0 với mọi x
b, 4x – x2 – 5 < 0 với mọi x
Lời giải:
a, Ta có: x2 – 6x + 10 = x2 – 2.x.3 + 9 + 1 = (x – 3)2 + 1
Vì (x – 3)2 ≥ 0 với mọi x nên (x – 3)2 + 1 > 0 mọi x
Vậy x2 – 6x + 10 > 0 với mọi x.
b, Ta có: 4x – x2 – 5 = -(x2 – 4x + 4) – 1 = -(x – 2)2 -1
Vì (x – 2)2 ≥ 0 với mọi x nên –(x – 2)2 ≤ 0 với mọi x.
Suy ra: -(x – 2)2 -1 ≤ 0 với mọi x
Vậy 4x – x2 – 5 < 0 với mọi x.
a, P = x2 – 2x + 5
b, Q = 2×2 – 6x
c, M = x2 + y2 – x + 6y + 10
Lời giải:
a, Ta có: P = x2 – 2x + 5 = x2 – 2x + 1 + 4 = (x – 1)2 + 4
Vì (x – 1)2 ≥ 0 nên (x – 1)2 + 4 ≥ 4
Suy ra: P = 4 là giá trị bé nhất ⇒ (x – 1)2 = 0 ⇒ x = 1
Vậy P = 4 là giá trị bé nhất của đa thức khi x = 1.
b, Ta có: Q = 2×2 – 6x = 2(x2 – 3x) = 2(x2 – 2.3/2 x + 9/4 – 9/4 )
= 2[(x – 2/3 ) – 9/4 ] = 2(x – 2/3 )2 – 9/2
Vì (x – 2/3 )2 ≥ 0 nên 2(x – 2/3 )2 ≥ 0 ⇒ 2(x – 2/3 )2 – 9/2 ≥ – 9/2
Suy ra: Q = – 9/2 là giá trị nhỏ nhất ⇒ (x – 2/3 )2 = 0 ⇒ x = 2/3
Vậy Q = – 9/2 là giá trị nhỏ nhất của đa thức khi x = 2/3 .
c, Ta có: M = x2 + y2 – x + 6y + 10 = (y2 + 6y + 9) + (x2 – x + 1)
= (y + 3)2 + (x2 – 2.1/2 x + 1/4 + 3/4) = (y + 3)2 + (x – 1/2)2 + 3/4
Vì (y + 3)2 ≥ 0 và (x – 1/2)2 ≥ 0 nên (y + 3)2 + (x – 1/2)2 ≥ 0
⇒ (y + 3)2 + (x – 12)2 + 3/4 ≥ 3/4
⇒ M = 3/4 là giá trị nhỏ nhất khi (y + 3)2 =0
⇒ y = -3 và (x – 1/2)2 = 0 ⇒ x = 1/2
Vậy M = 3/4 là giá trị nhỏ nhất tại y = -3 và x = 1/2
Câu 10: Tìm giá trị lớn nhất của đa thức:
a, A = 4x – x2 + 3
b, B = x – x2
c, N = 2x – 2×2 – 5
Câu 11:
Chứng minh các đẳng thức sau:
a) (a – b)3 = -(b – a)3; b) (- a – b)2 = (a + b)2
Bài tập hằng đẳng thức đáng nhớ nâng cao
Bài 1. Cho đa thức 2x² – 5x + 3 . Viết đa thức trên dưới dạng 1 đa thức của biến y trong đó y = x + 1.
Lời Giải
Theo đề bài ta có: y = x + 1 => x = y – 1.
A = 2x² – 5x + 3
= 2(y – 1)² – 5(y – 1) + 3 = 2(y² – 2y + 1) – 5y + 5 + 3 = 2y² – 9y + 10
Bài 2. Tính nhanh kết quả các biểu thức sau:
a) 127² + 146.127 + 73²
b) 98.28– (184 – 1)(184 + 1)
c) 100² – 99² + 98² – 97² + …+ 2² – 1²
d) (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)
Lời Giải
a) A = 127² + 146.127 + 73²
= 127² + 2.73.127 + 73²
= (127 + 73)²
= 200²
= 40000 .
b) B = 9 8 .2 8 – (18 4 – 1)(18 4 + 1)
= 188 – (188 – 1)
= 1
c) C = 100² – 99² + 98² – 97² + …+ 2² – 1²
= (100 + 99)(100 – 99) + (98 + 97)(98 – 97) +…+ (2 + 1)(2 – 1)
= 100 + 99 + 98 + 97 +…+ 2 + 1
= 5050.
d) D = (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)
= (20² – 19²) + (18² – 17²) + (16² – 15²)+ …+ (4² – 3²) + (2² – 1²)
= (20 + 19)(20 – 19) + (18 + 17)(18 – 17) + ( 16 +15)(16 – 15)+ …+ (4 + 3)(4 – 3) + (2 + 1)(2 – 1)
= 20 + 19 + 18 + 17 + 16 +15 + …+ 4 + 3 + 2 + 1
= 210
Bài 3. So sánh hai số sau, số nào lớn hơn?
a) A = (2 + 1)(22+ 1)(24+ 1)(28 + 1)(216 + 1) và B = 232
b) A = 1989.1991 và B = 19902
Lời giải:
a) Ta nhân 2 vế của A với 2 – 1, ta được:
A = (2 – 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
Ta áp dụng đẳng thức ( a- b)(a + b) = a² – b² nhiều lần, ta được:
A = 232 – 1.
=> Vậy A < B.
b) Ta đặt 1990 = x => B = x²
Vậy A = (x – 1)(x + 1) = x² – 1
=> B > A là 1.
Bài 4. Chứng minh rằng:
a) a(a – 6) + 10 > 0.
b) (x – 3)(x – 5) + 4 > 0.
c) a² + a + 1 > 0.
Lời Giải
a) VT = a² – 6a + 10 = (a – 3)² + 1 ≥ 1
=> VT > 0
b) VT = x² – 8x + 19 = (x – 4)² + 3 ≥ 3
=> VT > 0
c) a² + a + 1 = a² + 2.a.½ + ¼ + ¾ = (a + ½ )² + ¾ ≥ ¾ >0.
Bài 5. Tìm giá trị nhỏ nhất của các biểu thức sau:
a) A = x² – 4x + 1
b) B = 4x² + 4x + 11
c) C = 3x² – 6x – 1
Tham khảo thêm bài tập về 7 hằng đẳng thức đáng nhớ: TẠI ĐÂY
Trên đây là link tải trọn bộ bài tập về 7 hằng đẳng thức đáng nhớ đẩy đủ, chi tiết có đáp án mà chúng tôi đã tổng hợp được. Hy vọng với bộ tài liệu này, các em học sinh sẽ có thêm nhiều kiến thức, kỹ năng giải toán với hằng đẳng thức và đạt kết quả cao hơn trong môn học này. Trân trọng!